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Discriminant Analysis

Discriminant Analysis With 2-Groups

Comparison of 2-Group Discriminant Analysis With Logistical Regression

Discriminant Analysis With More 

Than 2-Groups

KEY CONCEPTS

*****

Discriminant Analysis

Discriminant function

A priori categories or groups

Homogeneity of variance/covariance matrices

Differences between discriminant analysis and logistical regression

Partitioning of sums of squares in discriminant analysis


TSS = BSS = WSS

Discriminant score

Discriminant weight or coefficient

Discriminant constant

Discriminant analysis assumptions

Steps in the discriminant analysis process

Box's M test and its null hypothesis

Wilks' lambda

Stepwise method in discriminant analysis

Pin and Pout criteria

F-test to determine the effect of adding or deleting a variable from the model

Unstandardized and standardized discriminant weights

Measures of goodness-of-fit

Eigenvalue

Canonical correlation

Model Wilks' lambda

Classification table and hit ratio

t-test for a hit ratio

Maximum chance criteria

Proportional chance criteria

Press's Q statistic

Histogram of discriminant scores

Casewise plot of the predictions

Calculation of the cutting score: equal and unequal groups

Prior probability

Conditional probability

Bayes' theorem and posterior probability

Structure coefficient or discriminant loading

Group centroid

Testing the collinearity of the predictor variables

Assumptions about multiple discriminant functions


Number: g-1 or k whichever is less


Functions may be collinear


Discriminant scores must be independent

KEY CONCEPTS (cont.)

Interpretation of multiple discriminant functions

Territorial map

Scatterplot of the discriminant scores across the discriminant functions

Lecture Outline

· What is discriminant analysis

· The concept of partitioning sums of squares

· Discriminant assumptions

· Stepwise discriminant analysis with Wilks' lambda

· Testing the goodness-of-fit of the model

· Determining the significance of the predictor variables

· A 2-group discriminant problem

· A multi-group discriminant problem

Discriminant Analysis
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Z = a + W1X1 + W2X2 + ... + WkXk

Dependency Technique


( Dependent variable is nonmetric


( Independent variables can be metric and/or 


    nonmetric


Used to predict or explain a nonmetric dependent variable with two or more a priori categories

Assumptions


( Xk are multivariate normally distributed


( Homogeneity of variance-covariance 


    matrices of Xk across groups


( Xk are independent, non-collinear


( The relationship is linear

( Absence of outliers

Predicting a Nonmetric Variable
Two approaches


Logistical Regression … with a dummy 


coded DV



Limited to a binary nonmetric dependent 



variable



Makes relatively few restrictive assumptions


Discriminant Analysis … with a nonmetric 


dependent variable with 2 or more groups



Not limited to a binary nonmetric 



dependent variable



Makes several restrictive assumptions

Partitioning Sums of Squares (SS) in Discriminant Analysis
In Linear Regression
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The Total SS ( ( Y- Y) 2 is partitioned into
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Regression SS ( ( Y'- Y) 2 



Residual SS + ( ( Y'- Y) 2
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( ( Y- Y) 2 = ( ( Y'- Y) 2 + ( ( Y'- Y) 2

Goal 
Estimate parameters that minimize the Residual SS

Partitioning Sums of Squares (SS) in Discriminant Analysis (cont.)

In Discriminant Analysis
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Type of Sentence (probation = 0, prison = 1)


The Total SS ( ( Zi- Z) 2 is partitioned into:



Between Group SS  ( ( Zj- Z) 2 



Within Groups SS  ( ( Zij- Zj) 2



( ( Zi- Z) 2 = ( ( Zj- Z) 2 + ( ( Zij- Zj) 2




i = an individual case, j = group j




Zi = individual discriminant score

Z = grand mean of the discriminant 

scores




Zj = mean discriminant score for group j

Goal
Estimate parameters that minimize the Within Group SS

Elements of the Discriminant Model


Z = a + W1X1 + W2X2 + ... + WkXk

Z = discriminant score, a number used to predict group membership of a case

a = discriminant constant

Wk = discriminant weight or coefficient, a measure of the extent to which variable Xk discriminates among the groups of the DV

Xk = an IV or predictor variable. Can be metric or nonmetric.

Discriminant analysis uses OLS to estimate the values of the parameters (a) and Wk that minimize the Within Group SS

An Example of Discriminant Analysis with a Binary Dependent Variable

Predicting whether a felony offender will receive a probated or prison sentence as a function of various background factors.

Dependent Variable


Type of sentence (type_sent)

(0 = probation, 1 = prison)

Independent Variables


( Degree of drug dependency (dr_score)


( Age at first arrest (age_firs)


( Level of work skill (skl_index)


( The seriousness of the crime (ser_indx)

Discriminant Analysis with Two Groups




Z0



  Z



Z1


f of Z











          Probation (0)

     Prison (1)

Between SS = (Z0 - Z)2 + (Z1 - Z)2 = ( (Zj - Z)2 = BSS

Within SS = (Zi0 - Z0)2 + (Zi1 - Z1)2 = ( (Zij - Zj)2 =WSS

Total SS = ( (Zi - Z)2 = TSS

Z0 and Z1 are called centroids, the mean discriminant score for each group

Discriminant Analysis Assumptions

· The predictor variables are multivariate normal, ipso facto univariate normal

· The variance-covariance matrices of the predictor variables across the various groups are the same in the population, i.e. homogeneous

· The groups defined by the DV exist a priori 

· The predictor variables are noncollinear

· The relationship is linear in its parameters

· Absence of leverage point outliers

· The sample is large enough, say 30 cases for each predictor variable

Steps in Discriminant Analysis Process

· Specify the dependent & the predictor variables

· Test the model’s assumptions a priori
· Determine the method for selection and criteria for entering the predictor variables into the model

· Estimate the parameters of the model

· Determine the goodness-of-fit of the model and examine the residuals

· Determine the significance of the predictors

· Test the assumptions ex post facto
· Validate the results

 The Sentence-Type Discriminant Model

Specification of the model (N = 70)


Z = a + W1(dr_score) + W2(age_firs) +

     W3(skl_indx)... + W4(ser_indx)
Are the predictor variables multivariate normally distributed?


The Sentence-Type Discriminant Model (cont.)


The Sentence-Type Discriminant Model (cont.)


Variable
Skew
Kurtosis

Dr-score
-0.5049
-0.6946

Age_firs
+0.7728
-0.4250

Skl_indx
-0.0266
-1.2321

Ser_indx
+0.2197
-1.1727

Are the Variance/Covariance Matrices of the Two Groups Homogeneous?
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The variances are on the diagonals, and the covariances are on the off-diagonals.

Q
Are the variance/covariance matrices of the two groups the same in the population, i.e. homogeneous?

Are the Variance/Covariance Matrices of the Two Groups Homogeneous? (cont.)

Box's M test

H0: the variance/covariance matrices of the two groups are the same in the population.

[image: image2.wmf]
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Box's M = 0.361, 

Approximate F = 0.116, p = 0.951

Conclusion: The null hypothesis with respect to the homogeneity of variance/covariance matrices in the population is accepted.

How Will the Predictor Variables Be 

Entered into the Discriminant Model?

SPSS offers two methods for building a discriminant model …


Entering all the variables simultaneously


Stepwise method

In this example, the variables will be entered in a stepwise fashion using Wilks' lambda criterion

Q
What is Wilks' lambda (()?

For a given predictor variable, ( is the ratio of the WSS to the TSS (( = WSS / TSS)

It is derived from a one-way ANOVA with type_sent as the IV and the predictor variable as the DV

How Will the Predictor Variables be Entered into the Discriminant Model? (cont.)


( = (WSS / TSS)

( = ( (Zij - Zj)2 / ( (Zi - Z)2
· Step 1:
Compute four one-way ANOVAs with type_sent as the IV and each of the four predictor variables as the DVs

[image: image4.wmf]
· Step 2:
Identify the predictor variable that has the lowest significant Wilks' lambda (() and enter it into the discriminant model, i.e. ser_indx. (Pin default = 0.05)

· Step 3: Estimate the parameters of the resulting discriminant model

How Will the Predictor Variables be Entered into the Discriminant Model? (cont.)

· Step 4: Of the variables not in the model, select the predictor that has the lowest significant ( and enter it into the model. Determine if the addition of the variable was significant. Now check if the predictor(s) previously entered are still significant. (Pout default = 0.10)

· Step 5: Repeat Step 4 until all the predictor variables are entered into the model or until none the variables outside the model have significant ('s.

How Is the Significance of Change Determined When a Variable is Entered Into the  Discriminant Function?

Use an F-ratio comparing the Wilks' lambda of the model with the greater number of predictors (k) with the one with the lesser number of predictors (k-1)


F =    1 - (( k-1) / ((k)

    (N - g - 1)

         (( k-1) / ((k)   
        (g - 1)


( = WSS / TSS of the function


N = total sample size


g = number of DV groups


df = (N - g - 1) and (g - 1)

Estimation of the Parameters of the Model


Z = a + W1(dr_score) + W2(age_firs) +

     W3(skl_indx)... + W4(ser_indx)
What values of the constant (a) and the discriminant coefficients Wk best predict whether a case will receive a probated or a prison sentence?

After variable selection by a stepwise process using Wilks' (, the best equation was found to be …
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Z = -0.706 - 0.235 (dr_score) + 0.564 (ser_indx)
Estimation of the Parameters of the Model (cont.)

Prediction of a case

Take a case with dr_score = 9, ser_indx = 1, and an actual sentence = 0, (i.e. a probated case)

Z = -0.706 - 0.235 (9) + 0.564 (1) = -2.25

Since -2.25 is closer to the code 0 than the code 1, the case would be predicted a probated case, i.e. code 0.

How Can the Goodness-of-Fit of the Model Be Measured?

· Eigenvalues (()

· The Canonical Correlation eta (()

· Wilks' Lambda (()

· Classification Table

Hit Ratio

t-test of the Hit Ratio

Maximum Chance Criteria

Proportional Chance Criteria

Press’s Q Statistic

· Casewise Plot of the Predictions

What is an Eigenvalue?

In matrix algebra, an eigenvalue is a constant, which if subtracted from the diagonal elements of a matrix, results in a new matrix whose determinant equals zero.

An example


Given the matrix:






4
1



A =







2
5






(4 - x)

1



A    =





= 0.0





2

(5 - x)


Calculating the determinant of the matrix A:



( 4 - x) (5 - x) - (2) (1) = 0.0



(20 - 4x - 5x + x2 - 2) = 0.0



(18 - 9x + x2) = 0.0



(x2 - 9x + 18) = 0.0

This quadratic equation has two solutions or eigenvalues:

+ 6  and  + 3

What Is an Eigenvalue in Discriminant Analysis?

In the present example, the DV is composed of two groups; i.e. cases either sentenced to probation or prison.

When there are two groups, one discriminant function can be extracted from the data and its associated eigenvalue is as follows …


( = BSS / WSS = [ ( ( Zj- Z)2 / ( ( Zij- Zj)2 ]

Interpretation

If ( = 0.00, the model has no discriminatory power, BSS = 0.0

The larger the value of (, the greater the discriminatory power of the model

What is the Eigenvalue for the 

Sentence-Type Example?

[image: image6.wmf]
The eigenvalue of the discriminant function = 0.305

The % of the variance explained that is explained by this discriminant function = 100%*

The cumulative percentage of the variance explained by the 1st discriminant function = 100%*


* With two DV groups, only one discriminant function can be extracted, which will therefore explain all the variance explained by the model. But with three groups, two functions can be extracted, with g groups, (g - 1) functions can be extracted, or k functions if k is less than g. Therefore, a different % of the total variance explained will be explained by each of the successive functions extracted.  

How Can You Tell if the Eigenvalue Is Significant?

Two useful statistical indicators can be derived from the eigenvalue …


The canonical correlation eta (()


Wilks' lambda (() for the model

The canonical correlation (()


 ( =     
( / (1 + ()  =     BSS / TSS

( = the correlation of the predictor(s) with the 

discriminant scores produced by the model

(2 = coefficient of determination

1 - (2 = coefficient of non-determination

For the sentence-type example


 
( =     0.3050 / (1 + 0.3050)  =  0.483   

How Can You Tell if the Eigenvalue is Significant? (cont.)

The Wilks' ( for the discriminant model

 ( = (1 - (2) = [ 1 / (1 + () ] = WSS / TSS

( is chi-square distributed for df = (k - 1), k equal to the number of parameters estimated ***

For the sentence-type example


( = 0.3050

( = [ 1 / (1 + 0.3050) ] = 0.766, which can be converted to a chi-square statistic ***


(2 = 17.837, df = 2, p = 0.0001 


H0: In the population Z0 = Z1 = Z

Since the chi-square results are significant … 

H0 is rejected and it is concluded the differences in the mean discriminant scores of the two groups are greater than could be attributed to sampling error. 


***   (2 = - [(n - 1) - 0.5 (m + k + 1)] ln (, df= (k - 1), m=number of discriminant function extracted, k=number of predictor variables

How Can You Tell if the Eigenvalue is Significant? (cont.)
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How Well Does the Model Predict?

[image: image9.wmf]
Overall results

Overall hit ratio = 65.7%

Correctly classified probationers = 73.0%

Correctly classified prisoners = 57.6%

Does the Model Predict Any Better 

Than Chance?

Maximum chance criterion (MCC)
Predict that all 70 cases are in the group with the largest number of cases.

MCC = (nL / NL) (100)


nL = number of subjects in the larger of the 

 two groups

NL = total number of subjects in to combined 

 groups

For the sentence-type example


Probation group, n = 37


Prison group, n = 33


If all the cases were predicted to 

receive probation …

MCC = (37 / 70) (100) = 52.86% correct by 

chance

Does the Model Predict Any Better Than Chance? (cont.)

Proportional chance criterion (Cpro)

Randomly classify the cases proportionate to the number of cases in either group.

Cpro =p2 + (1 - p)2


p = proportion of subjects in one group


(1 - p) = proportion of cases in the other group

Proportion of probationers = (37 / 70) = 0.5286

Proportion of prisoners = (33 / 70) = 0.4714

Cpro = 0.5286 2 + (1 - 0.4714)2 = 0.5588 or a hit 

ratio of 55.88%

Comparison of hit ratios

( The model
65.71%

( MCC


52.86%

( Cpro


55.88%

Is the Hit Ratio of the Model Significantly Better Than Chance?

By the maximum chance criterion (MCC), one could guess 52.86% of the cases correctly. The model hit 65.71% correctly. Is this significantly better than chance?

Two ways to test whether the model hit ratio is significantly better than chance


t-test for groups of equal size

Press's Q statistic, groups can be 

of unequal size

t-test for a model with equal size groups


H0: the model hit ratio is no better than chance 



t = (P - 0.5) /       (0.5) (1 - 0.5) / N



P = the proportion the model predicted correctly



df = (N - 2)

Is the Hit Ratio of the Model Significantly Better Than Chance? (cont.)

Press's Q statistic


Q = [ N - (n) (g) ] 2 / [ N * (g - 1)]


N = total number of subjects


n = number of cases correctly classified


g = number of groups


Q is chi-square distributed for df = 1


For the sentence-type example


Q = [ 70 - (46) (2) ] 2 / [ 70 - (2 - 1)] = 7.0145

p ( 0.01

Decision
The null hypothesis that the model hit ratio is no better than chance is rejected

How Can a Cutting Score Be Established to Sort the Cases Into Either Group Based on Their Discriminant Scores?
When n0 = n1


Zcutting = (Z0 + Z1) / 2  

(Zj = mean discriminant score for group j)

When n0 ( n1
Zcutting = (n0  Z0 + n1 Z1) / 2

For the sentencing-type study



Z0 = -0.5141 and  Z1 = +0.5764



Zcutting = [ (37) (-0.5141 )+ (33) (+0.5764) ] / 2



Zcutting = -0.00025, or slightly less than 0.0

Can the Predictions of the Model Be Graphed? (cont.)

Box-Whisker plot of the distributions of discriminant scores for probation and prison cases with the cutting score set at -0.00025



Cutting score (-0.00025)

What is the Best Way to See the Predictions Made on Individual Cases
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Discriminant scores … the column on the extreme right hand side of the table


For case 1, discriminant score = -2.2575

How Does SPSS Classify Cases?

In SPSS, case classification is accomplished by calculating the probability of a case being in one group or the other (i.e. probation or prison), rather than by simply using a cutting score. 

This is accomplished by calculating the posterior probability of group membership using Bayes' Theorem …


P (Gi D) = [ P (D Gi) P (Gi) ] / [ ( P(D Gi) P (Gi) ]

D = the discriminant score (i.e. Z)


P (Gi D) = posterior probability that a case is in 

group i, given that it has a specific discriminant 

score D


P (D Gi) = conditional probability that a case has a discriminant score of D, given that it is in group i

P (Gi) = prior probability that a case is in group i, which would be equal to (ni / N)

How Does SPSS Classify Cases? (cont.)

The Bayesian probabilities associated with being in either group are calculated, and the greater of the two probabilities is used to classify the case.

Example: Case 1

Posterior probability of being in the probation group P (Gprobation   D) = 0.932

Posterior probability of being in the prison group P (Gprison   D) = 0.068

Since P (Gprobation   D) ( P (Gprison   D), the case is classified as a probation case. (0.932 ( 0.068)

The column labeled "Actual Group" shows the group the case actually belongs to. If the Bayesian probability misclassifies the case, the case is marked with two asterisks (**). 

These are the errors produced by the model, which can also be seen in the classification table in a previous exhibit.

Is Each Predictor Variable in the 

Model Significant?

The significance of the individual predictors variables is accomplished by conducting a one-way MANOVA …

With the grouping variable as the IV and

The discriminant predictors as the DVs. 

The MANOVA sums of squares are then used to calculate Wilks' lambda (() for each predictor


( = WSS / TSS

The results of the final stepwise discriminant model
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Is Each Predictor Variable in the Model Significant? (cont.)

For dr_score (F to remove: p = 0.0195)

( = WSS / TSS = (232.862) / (232.862 + 47.081) = 0.8318 

For ser_indx (F to remove: p ( 0.0001)

( = WSS / TSS = (480.152) / (480.152 + 8.433) = 0.9827

The Null Hypothesis

H0: the discriminant coefficients in the population are equal to zero

( = WSS / TSS = 1.0, i.e. the WSS = TSS, & BSS = 0

Decision

The null hypothesis is rejected since both Wilks' lambdas (() associated with the two predictors are significant 

This finding should not be surprising since

The stepwise processes guarantees that only significant variables will be entered into the model, and 

That all variables in the model are checked to assure that they remain significant as new variables are added.

How are the Discriminant Coefficients Interpreted

The Final Stepwise Model


Z = -0.706 - 0.235 (dr_score) + 0.564 (ser_indx)
For dr-score

As dr_score increases by one unit, the discriminant score Z decreases by 0.235

Holding the seriousness of the offence (ser_indx) constant, the more drug dependent the defendant, the more likely he/she will be granted probation (code = 0)

For ser_indx

As ser_indx increases by one unit, the discriminant score Z increases by 0.564

Holding the drug dependency (dr_score) constant, the more serious the offence, the more likely the defendant will be sent to prison (code = 1)

How Can the Relative Impact on the DV of the Different Predictor Variables be Compared?

Two ways

Compare the standardized discriminant weights, i.e. coefficients

Compare the structure coefficients, also called the discriminant loadings 

Standardized discriminant coefficient (Ck)
The relative difference among the discriminant coefficients can not be compared …

If the predictors variables are in different units of measurement.

The discriminant coefficients must first be converted to standardized coefficients (Ck)

How Can the Relative Impact on the DV of the Different Predictor Variables be Compared? (cont.)


Zz = C1ZX1 + C2ZX2 + … + CkZXk

Ck = Wk      ( (Xk - Xk)2 / (N - g)

Wk  = the unstandardized discriminant coefficient of variable k


( (Xk - Xk)2 = SS of the predictor variable


N = total sample size


g = number of DV groups

Examples: (dr_score) and (ser_indx)



Cdr_score = - 0.235     495.67/ (70 - 2)  = - 0.6345



C ser_indx = + 0.5643     232.857/ (70 - 2)  = +1.044

Since +1.044 is greater in absolute value than 

-0.6345, ser_indx has greater discriminatory 

impact than dr_score.

How Can the Relative Impact on the DV of the Different Predictor Variables be Compared? (cont.)

Unstandardaized discriminant coefficients (Wk)
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Standardized discriminant coefficients (Ck)
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Notice that there is no constant (a) in a standardized discriminant function equation since the mean of a standardized variable equals zero.

What is a Structure Coefficient?

A structure coefficient, or discriminant loading, is the correlation between a predictor variable and the discriminant scores produced by the discriminant function.

The higher the absolute value of the coefficient, the greater the discriminatory impact of the predictor variable on the DV.

Structure coefficients of the predictors
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Ser_index has the highest correlation with the discriminant scores, followed by dr_score, skl_indx and age_firs. The algebraic sign (() indicates the direction of the relationship.

On Average, How Well Did the Discriminant Function Divide the Two Groups?

Group Centroids

One way to determine the degree of separation between the two groups is to compute the mean discriminant score for either group. 

These means are called the group centroids

Probation (0) and prison (1) group centroids

[image: image15.wmf]Functions at Group Centroids
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 Are the Predictor Variables Independent, Noncollinear?

Discriminant analysis assumes that the predictor variables are independent or noncollinear.

This problem is partially addressed by using a stepwise procedure to enter the variables into the equation, since …

The collinearity among the variables is considered in the process and the resulting discriminant coefficients are partial coefficients.


Z = -0.706 - 0.235 (dr_score) + 0.564 (ser_indx)
Q
Are dr_score and ser_indx significantly correlated?

Not withstanding the stepwise process, the final two predictors are significantly correlated. 

(r = 0.2791, p = 0.019).

 Would the Same Results be Achieved Using Logistical Regression?

Yes …virtually the same results.

The functions


Discriminant function



Z = -0.7065 - 0.2350 (dr_score) + 0.5643 (ser_indx)


Logistical regression equation



Prob event = 1 / (1 + e - ( -0.8011 - 0.272dr_score + 0.611 ser_indx ) )

Hit ratios


Discriminant analysis

65.71%


Logistical Regression

65.71%

Significance of predictor variables







dr_score


ser_indx


Discriminant function

p = .0001

p = .0004

Logistical regression

p ( .0001

p ( .0001

Results of the Logistical Analysis of 

Type of Sentence


---------------------- Variables in the Equation -----------------------

Variable           B      S.E.     Wald    df      Sig       R   Exp(B)

DR_SCORE      -.2720     .1183   5.2810     1    .0216  -.1841    .7619

SER_INDX       .6111     .1716  12.6776     1    .0004   .3321   1.8424

Constant      -.8011     .7311   1.2006     1    .2732

--------------- Variables not in the Equation -----------------

Residual Chi Square      1.360 with      2 df     Sig =  .5067

Variable          Score    df      Sig       R

AGE_FIRS         1.0003     1    .3172   .0000

SKL_INDX          .3970     1    .5287   .0000


-2 Log Likelihood       78.474

 Goodness of Fit         67.926

                     Chi-Square    df Significance

 Model Chi-Square        18.338     2        .0001

 Improvement              5.931     1        .0149


Classification Table for TYPE_SEN

                   Predicted

                  .0      1.0     Percent Correct

                    0  |    1

Observed       +-------+-------+

   .0      0   |   27  |   10  |   72.97%

               +-------+-------+

   1.0     1   |   14  |   19  |   57.58%

               +-------+-------+

                          Overall  65.71%

What if the Dependent Variable Has More Than Two Groups?

Example


Dependant variable

Pre-disposition status (jail, bail, or ROR)


Independent variables



Age of first arrest (age_firs)



Age at time of arrest (age)



Degree of drug dependency (dr_score)



Number of prior arrests (pr_arrst)

Type of counsel (counsel 0 = court appointed, 1 = retained)

One Versus Multiple Discriminant Functions

( When the dependant variable has two groups …

One discriminant function can be extracted from the data

( When there are three groups … 

Two functions can be extracted from the data

( When there are g-number of groups …

(g - 1) functions can be extracted from the data,

Or k-number of functions if the number of predictor variables (k) is less than the number of groups (g)

Geometry of Two Discriminant Functions

Imagine a problem with two predictor variables and a DV with three groups. Now draw a scatterplot of the cases in each group across the two predictor variables.
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  X1


Group 1 = (


Group 2 = o



Group 3 = x

Q
How best to describe these three groups?

Geometry of Two Discriminant Functions (cont.)
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  X1
Two vectors are fit to the data

Z1
reasonably good fit for groups 1 and 3, but a bad fit to group 2 (1st discriminant function)

Z2
reasonably good fit for group 2, but a bad fit for groups 1 & 3  (2nd discriminant function)

The two vectors taken together better explain the three groups than either one by itself.

Statistics with Multiple Discriminant Functions

The statistical output with multiple discriminant functions is comparable to that with one function …

Except that multiple sets of statistics are derived for each discriminant function, including:

Discriminant coefficients, or weights

Standardized coefficients, or weights

Centroids

Structured coefficients, or loadings

Eigenvalues

Canonical correlations

Wilks' lambdas

Assumptions About Multiple Discriminant Functions

Q
Must the various discriminant functions be independent of each other, i.e. noncollinear?

No, they may be collinear or noncollinear, whatever best fits the data. Geometrically, the functions can be other than 90( apart.

Q
Must the discriminant scores (Z) produced by the various discriminant functions be independent of each other, i.e. noncollinear?

Yes, the correlations among the discriminant scores produced by the various functions must all be equal to zero (0.0)

r Z1 Z2 = 0.0
Discriminant Analysis of Pre-Disposition Status

The analysis was conducted using a stepwise selection process using the Wilks' lambda criterion

Q
Are the variance/covariance matrices of the three groups the same in the population?

[image: image16.wmf]
Discriminant Analysis of Per-Disposition Status (cont.)

Box's M test for the homogeneity of variance/ covariance matrices

Analysis 1

Box's Test of Equality of Covariance Matrices

[image: image17.wmf]
[image: image18.wmf]
Decision
(Box's M = 12.39, p = 0.0663)
The null hypothesis that the variance/covariance matrices are equal in the population is accepted. 

What Is the Final Model Estimated by the Discriminant Analysis?

Two discriminant functions were extracted …

[image: image19.wmf]
1st Function


Z1 = 2.375 - 0.146 (age) + 1.946 (counsel)

2nd Function


Z2 = -6.655 + 0.253 (age) + 1.682 (counsel)

Given a 22-year-old offender with retained counsel …


Z1 = 2.375 - 0.146 (22) + 1.946 (1) = 1.109


Z2 = -6.655 + 0.253 (22) + 1.682 (1) = 0.593

These two discriminant scores will be used to classify the offender into one of the three pre-disposition groups.

Are the Two Discriminant Functions Significant?

[image: image20.wmf]
[image: image21.wmf]
1st Function


Eigenvalue = 0.8819

Of the variance explained by the two functions, the 1st explains 97.97%

The canonical correlation (() between the two predictor variables and the discriminant scores produced by the 1st function = 0.6846

The chi-square test of the Wilks' ( is significant ((2 = 43.254, p ( 0.0001). The null hypothesis that in the population the BSS = 0, ( = 0, is rejected.

Are the Two Discriminant Functions Significant? (cont.)

2nd Function


Eigenvalue = 0.0183

Of the variance explained by the two functions, the 2nd explains 2.03%

The canonical correlation (() between the two predictor variables and the discriminant scores produced by the 2nd function = 0.1341

The chi-square test of the Wilks' ( is not significant ((2 = 1.206, p = 0.272). The null hypothesis that in the population the BSS = 0, ( = 0, is accepted.


Decision

Since the second function is not significant, its associated statistics will not be used in the interpretation of the affect of age and counsel on pre-disposition status.

What Are the Standardized Canonical Discriminant Functions?

[image: image22.wmf]
Zz = C1ZX1 + C2ZX2 + … + CkZXk
1st Function


Zz1 = -0.508 (age) + 0.770 (counsel)

2nd Function


Zz2 = 0.883 (age) + 0.666 (counsel)

Nota Bene

Recall that the 2nd function was found not to be significant. Of the two variables in the 1st function, counsel has the greater impact.

What is the Correlation Between Each of the Predictor Variables and the Discriminant Scores Produced By the

Two Functions?

Structure coefficients, or loadings …

[image: image23.wmf]
The predictors counsel, age_firs, and pr_arrst load highest on the 1st function, while age and dr_score load highest on the 2nd function.

What is the Mean Discriminant Score for Each Pre-Disposition Group on Each Discriminant Function?

Recall that these mean discriminant scores are called centroids and that the 2nd discriminant function is not significant.
[image: image24.wmf]
Notice how numerically similar the centroids of the 1st function are for groups 2 and 3, i.e. bail and ROR. 

This means that the 1st function, while significant, will do a poor job discriminating between the bail and ROR groups, and most of its discriminatory power will be discriminating between the jail group versus the other two groups.

What Would a Scatterplot of the Discrimanant Scores of the Three Pre-Disposition Groups Reveal?


Reading across horizontally, notice how the 1st discriminant function separates the centroid-pair of the jail group (1) from that of the bail (2) and ROR (3) groups.

Reading vertically, however, notice that the 2nd discriminant function fails to separate the three centroid-pairs of the three groups. 

This is why the 2nd function was not found to be significant.

How Were the Individual Cases Classified?

Casewise plot of the cases

[image: image25.wmf]
What Was the Hit Ratio of the 

Discriminant Model?

[image: image26.wmf]Classification Results
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62.9% of original grouped cases correctly classified.

a. 


Hit Ratio = (44 / 70) (100) = 62.9%

Errors = (26 / 70) (100) = 37.14%

Notes on Discriminant Analysis: Charles M. Friel Ph.D., Criminal Justice Center, Sam Houston State University
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